Tag Archives: valve worm gearbox

China Standard Yj-Jz Series Electric Type Valve Worm Gearbox with Mounting Base and Lever Arm gearbox adjustment

Product Description

Product Description

YJ-JZ series part-turn electric type worm gearbox suitable for Damper, Ball Valves, Butterfly Valves, Plug Valves,etc. Mounting base can customized according to request.

 
Output torque from 3Nm, flexible product design, easy to install. The ratio can be customized according to the open time, input torque and output speed of the electric actuator.
 

Product Parameters

 

Model YJ-JZ-1 YJ-JZ-2 YJ-JZ-3 YJ-JZ-4 YJ-JZ-5 YJ-JZ-6 YJ-JZ-7 YJ-JZ-8 YJ-JZ-9
Ratio 80:1 80:1 200:1 335:1 300:1 415:1 450:1 640:1 920:1
44:1 44:1 50:1 50:1 50:1 55:1 65:1 65:1 82:1
Output torque
Nm
600 1200 1500 2500 4500 6500 10000 20000 32000
2500 4000 6500 10000 20000 32000 46000

 

Company Profile

 

FAQ

 

Q: What’s your main products?
A: Our main products are worm gearbox, bevel gearbox and spur gearbox for gate valve, globe valve, ball valve, butterfly valve and etc.

Q: How long is your delivery time?
A: Delivery time was depends on the quantity of the order and our inventory, normally is 10~15 days.

Q: Term of payment?
A: T/T 30% in advance, T/T balance before shipment.

Q: Can you provide free sample?
A: Yes, we can provide the sample for free, but the shipping costs need paid by yourself.

Q: Could you specially design and produce according to client’s requirements?
A: Yes, we can

If any other questions about our products, welcome to contact us.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Function: Change Drive Torque
Type: Worm Gear Box
Protection Grade: IP65 (IP67,IP68 Optional)
Painting: Blue, Grey, Black (Customizable)
Material: Ductile Iron, Carbon Steel (Customizable)
Customization:
Available

|

Customized Request

worm gearbox

Calculating Gear Ratio in a Worm Reducer

The gear ratio in a worm reducer is determined by the number of teeth on the worm wheel (also known as the worm gear) and the number of threads on the worm shaft. The gear ratio formula for a worm reducer is:

Gear Ratio = Number of Teeth on Worm Wheel / Number of Threads on Worm Shaft

For example, if the worm wheel has 60 teeth and the worm shaft has a single thread, the gear ratio would be 60:1.

It’s important to note that worm reducers have an inherent self-locking property due to the angle of the worm threads. As a result, the gear ratio also affects the mechanical advantage and the system’s ability to resist backdriving.

When calculating the gear ratio, ensure that the worm reducer is properly designed and that the gear ratio aligns with the desired mechanical characteristics for your application. Additionally, consider factors such as efficiency, load capacity, and speed limitations when selecting a gear ratio for a worm reducer.

worm gearbox

Worm Gearboxes in Conveyor Systems: Benefits and Considerations

Worm gearboxes play a crucial role in conveyor systems, offering several benefits and considerations for their effective integration:

  • Space Efficiency: Worm gearboxes have a compact design, making them suitable for applications with limited space, such as conveyor systems.
  • High Reduction Ratios: Worm gearboxes can achieve high reduction ratios in a single stage, allowing for slower conveyor speeds without sacrificing torque.
  • Self-Locking: Worm gearboxes have inherent self-locking properties, preventing the conveyor from moving when the motor is not actively driving it.
  • Directional Control: Worm gearboxes facilitate directional control, enabling the conveyor to move forward or reverse as needed.
  • Low Noise: Worm gearboxes often produce lower noise levels compared to other gearbox types, contributing to quieter conveyor operation.

However, there are also considerations to keep in mind when using worm gearboxes in conveyor systems:

  • Efficiency: Worm gearboxes may have lower mechanical efficiency compared to some other gearbox types, leading to energy losses.
  • Heat Generation: Worm gearboxes can generate more heat due to sliding contact between the worm and gear, necessitating proper cooling mechanisms.
  • Lubrication: Proper lubrication is critical to prevent wear and ensure efficient operation. Regular maintenance is required to monitor lubrication levels.
  • Load and Speed: Worm gearboxes are well-suited for applications with high torque and low to moderate speed requirements. They may not be optimal for high-speed conveyors.

Before integrating a worm gearbox into a conveyor system, it’s important to carefully consider the specific requirements of the application, including load, speed, space constraints, and efficiency needs. Consulting with gearbox experts and manufacturers can help ensure the right choice for the conveyor’s performance and longevity.

worm gearbox

Can a Worm Gearbox Provide High Torque Output?

Yes, a worm gearbox is capable of providing high torque output due to its unique design and principle of operation. Worm gears are known for their high torque multiplication capabilities, making them suitable for applications that require significant torque transfer.

The torque output of a worm gearbox is influenced by several factors:

  • Lead Angle: The lead angle of the worm affects the mechanical advantage of the gear system. A larger lead angle can result in higher torque output.
  • Worm Diameter: A larger diameter worm can offer increased torque output as it provides more contact area with the gear.
  • Gear Ratio: The gear ratio between the worm and the gear determines the torque multiplication factor. A higher gear ratio leads to higher torque output.
  • Lubrication: Proper lubrication is essential to minimize friction and ensure efficient torque transmission.
  • Material and Quality: High-quality materials and precision manufacturing contribute to the gearbox’s ability to handle high torque loads.

Due to their ability to provide high torque output in a compact form factor, worm gearboxes are commonly used in various industrial applications, including heavy machinery, construction equipment, conveyor systems, and more.

China Standard Yj-Jz Series Electric Type Valve Worm Gearbox with Mounting Base and Lever Arm   gearbox adjustment	China Standard Yj-Jz Series Electric Type Valve Worm Gearbox with Mounting Base and Lever Arm   gearbox adjustment
editor by CX 2024-04-11

China wholesaler My-1-SD-180° Series Part-Turn Electri Type Valve Worm Gearbox cvt gearbox

Product Description

Product Description

MY-1-SD series 0~180° worm gearbox suitable for Ball Valves, Butterfly Valves, Plug Valves,etc. Handwheel can choose according to your requirements.

 
This model we have with adjustable end stops travelling nut principle swing angle 0~180° or without end stop swing angle 270°.
Has good mechanical quality and steady operating performance. It has high mechanical efficiency, with new design, and it’s very easy to operate. The flange connecting to valve is according to ISO5211.
 

Product Parameters

 

Model MY-0
-1S-D
MY-1
-1S-D
MY-2
-1S-D
MY-3
-1S-D
MY-4
-1S-D
MY-4
-1SZ-D
MY-5
-1S-D
MY-5
-1SZ-D
MY-6
-1S-D
MY-6
-1SZ-D
MY-7
-1S-D
MY-8
-1S-D
MY-9
-1S-D
MY-10
-1S-D
Flange F12 F14 F16 (F20) F25 F25 F30 F30 F35 F35 F40 F48 F60 F60
φD 150 175 210 250 300 300 350 350 415 415 475 560 686 686
PCD D0 125 140 165 205 254 254 298 298 356 356 406 483 603 603
N-H-DP 4-M12-18 4-M16-24 4-M20-30 8-M16-24 8-M16-24 8-M16-24 8-M20-27 8-M20-27 8-M30-45 8-M30-45 8-M36-54 12-M36-54 20-M36-54 20-M36-54
Convex (D1×h) 85×3 100×4 130×5 140×5 200×5 200×5 230×5 230×5 260×5 260×5 300×8 370×8 470×8 470×8
Max stem dia. 38
10×8
45
14×9
55
16×10
65
20×12
80
22×14
80
22×14
105
28×16
105
28×16
115
32×18
115
32×18
140
36×20
155
40×22
200
45×25
220
50×28
Input shaft 20 20 20 30 30 30 30 30 30 30 40 40 50 50
6 6 6 8 8 8 8 8 8 8 12 12 14 14
40 40 40 50 50 50 50 50 50 50 60 60 75 75

 

Company Profile

 

FAQ

 

Q: What’s your main products?
A: Our main products are worm gearbox, bevel gearbox and spur gearbox for gate valve, globe valve, ball valve, butterfly valve and etc.

Q: How long is your delivery time?
A: Delivery time was depends on the quantity of the order and our inventory, normally is 10~15 days.

Q: Term of payment?
A: T/T 30% in advance, T/T balance before shipment.

Q: Can you provide free sample?
A: Yes, we can provide the sample for free, but the shipping costs need paid by yourself.

Q: Could you specially design and produce according to client’s requirements?
A: Yes, we can

If any other questions about our products, welcome to contact us.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry Valve
Function: Change Drive Torque
Step: Double-Step
Type: Worm Gear Box
Operation: Electric Type
Protection Grade: IP65 (IP67,IP68 Optional)
Customization:
Available

|

Customized Request

worm gearbox

Self-Locking Properties in a Worm Gearbox

Yes, worm gearboxes exhibit self-locking properties, which can be advantageous in certain applications. Self-locking refers to the ability of a mechanism to prevent the transmission of motion from the output shaft back to the input shaft when the system is at rest. Worm gearboxes inherently possess self-locking properties due to the unique design of the worm gear and worm wheel.

The self-locking behavior arises from the angle of the helix on the worm shaft. In a properly designed worm gearbox, the helix angle of the worm is such that it creates a mechanical advantage that resists reverse motion. When the gearbox is not actively driven, the friction between the worm threads and the worm wheel teeth creates a locking effect.

This self-locking feature makes worm gearboxes particularly useful in applications where holding a load in position without external power is necessary. For instance, they are commonly used in situations where there’s a need to prevent a mechanism from backdriving, such as in conveyor systems, hoists, and jacks.

However, it’s important to note that while self-locking properties can be beneficial, they also introduce some challenges. The high friction between the worm gear and worm wheel during self-locking can lead to higher wear and heat generation. Additionally, the self-locking effect can reduce the efficiency of the gearbox when it’s actively transmitting motion.

When considering the use of a worm gearbox for a specific application, it’s crucial to carefully analyze the balance between self-locking capabilities and other performance factors to ensure optimal operation.

worm gearbox

Energy Efficiency of a Worm Gearbox: What to Expect

The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:

  • Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
  • Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
  • Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
  • Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
  • Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.

When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.

worm gearbox

Preventing Backlash in a Worm Gearbox

Backlash in a worm gearbox can lead to reduced accuracy, positioning errors, and decreased overall efficiency. Here are steps to prevent or minimize backlash:

  • High-Quality Components: Use high-quality worm gears and worm wheels with tight manufacturing tolerances. Precision components will help reduce backlash.
  • Proper Meshing: Ensure the worm gear and worm wheel are properly aligned and meshed. Improper meshing can lead to increased backlash.
  • Preload: Applying a small amount of preload to the worm gear can help reduce backlash. However, excessive preload can increase friction and wear.
  • Anti-Backlash Mechanisms: Consider using anti-backlash mechanisms, such as spring-loaded systems or adjustable shims, to compensate for any inherent backlash.
  • Lubrication: Proper lubrication can reduce friction and play a role in minimizing backlash. Use a lubricant that provides good film strength and reduces wear.
  • Maintenance: Regularly inspect and maintain the gearbox to identify and address any changes in backlash over time.

It’s important to strike a balance between reducing backlash and maintaining smooth operation. Consulting with gearbox experts and following manufacturer guidelines will help you optimize your worm gearbox’s performance while minimizing backlash.

China wholesaler My-1-SD-180° Series Part-Turn Electri Type Valve Worm Gearbox   cvt gearbox	China wholesaler My-1-SD-180° Series Part-Turn Electri Type Valve Worm Gearbox   cvt gearbox
editor by CX 2024-02-27

China wholesaler Xhw87-Pg10-P Valve Operator Worm Gearbox with Hot selling

Product Description

Model:XHW87-PG10 Part-turn Gear Box

Introduction
Part-turn worm gearboxes used for applications such as Ball Valves, Butterfly Valves, Plug Valves, Dampers.

  1. The maximum out-torque is 26000Nm
  2. Standard Flange :F25/F30/F35
  3. Optional Flange : 
  4. Max Stem Dia: 160mm
  5. Max Stem Height:165mm

Application
XHW part turn worm gearboxes are applied to dampers, ball valves, butterfly valves and also other 90° quarter turn valves. XHW part turn worm gear operator has variety models of hand wheel for optional.
 
Operating Environment

XHW part turn worm gearboxes are with good mechanical quality and steady operating performance which apply to deal with variety climate and temperature. We strive to develop XHW part turn worm gear operators to meet higher demands.
Enclosure: IP67
Working Temperature: From -20ºC to 120ºC( -4ºF to 248ºF)
Painting: Black(Customization) 

Introduction
XHW series Part-turn Gearboxes use worm and worm wheel revolute pairs, with high performance needle roller bearing assembled on both ends of the worm shaft. It ensures the thrust requirement during rotation. It’s in high mechanical efficiency withstands big torque, small size with compact design, and it’s also easy to operate and has reliable self-locking function.
 
Characters
1.Precision casting ductile iron housing
2.Optional output torque, range up to 32000Nm
3.High efficient needle roller bearing
4.High strength steel input shaft
5.Stroke 0°- 90°( ±5°)
6.Compact structure
7.Grease filled for longer life
8.Adjustable stopper (±5°)
9.Good seal
 
Connect with valve
The flange connecting to valve is according to ENISO5210 or DIN3210(Customization)
 

Main Products
Worm gearbox, bevel gearbox, valve gear box, worm gear operator, worm gear actuator, valve worm gear, valve gear operator, valve gear actuator, valve actuator
Gear Operator, Valve Gearbox, Worm Gearbox, Gearbox, Speed Reducer, Part-turn Worm Gearbox, Worm Gearbox Supplier, High Quality Worm Gearbox, Gearbox manufacturer

(XHW87-PG10S)

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery, Marine, Valves
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Other
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Customization:
Available

|

Customized Request

worm gearbox

Is it Possible to Reverse the Direction of a Worm Gearbox?

Yes, it is possible to reverse the direction of a worm gearbox by changing the orientation of either the input or output shaft. However, reversing the direction of a worm gearbox can have some implications that need to be considered:

  • Efficiency: Reversing the direction of a worm gearbox can potentially affect its efficiency. Worm gearboxes are typically more efficient in one direction of rotation due to the design of the worm and worm wheel.
  • Backlash: Reversing the direction of rotation might lead to increased backlash or play in the gearbox, which can impact precision and smooth operation.
  • Lubrication: Depending on the gearbox’s design, reversing the direction could affect lubrication distribution and lead to uneven wear on the gear teeth.
  • Load: Reversing the direction might also impact the gearbox’s load-carrying capacity, especially if it’s designed for predominantly one-way operation.
  • Noise and Vibration: Direction reversal can sometimes result in increased noise and vibration due to changes in gear engagement and meshing behavior.

If you need to reverse the direction of a worm gearbox, it’s advisable to consult the gearbox manufacturer’s guidelines and recommendations. They can provide insights into whether the specific gearbox model is suitable for reversible operation and any precautions or adjustments needed to ensure proper functioning.

worm gearbox

Diagnosing and Fixing Oil Leakage in a Worm Gearbox

Oil leakage in a worm gearbox can lead to reduced lubrication, increased friction, and potential damage to the gearbox components. Here’s a step-by-step process to diagnose and fix oil leakage:

  1. Inspect the Gearbox: Perform a visual inspection of the gearbox to identify the source of the leakage. Check for oil stains, wet spots, or oil pooling around the gearbox.
  2. Check Seals and Gaskets: Inspect the seals, gaskets, and O-rings for any signs of wear, cracks, or damage. These components are common points of leakage.
  3. Tighten Bolts and Fasteners: Ensure that all bolts, screws, and fasteners are properly tightened. Loose fasteners can create gaps that allow oil to escape.
  4. Replace Damaged Seals: If you find damaged seals or gaskets, replace them with new ones. Use seals that are compatible with the operating conditions and lubricant.
  5. Check Breather Vent: A clogged or malfunctioning breather vent can cause pressure buildup inside the gearbox, leading to leakage. Clean or replace the breather vent if necessary.
  6. Examine Shaft Seals: Check the shaft seals for wear or damage. If they’re worn out, replace them with seals of the appropriate size and material.
  7. Use Proper Lubricant: Ensure that you’re using the correct lubricant recommended for the gearbox. Using the wrong type of lubricant can cause leaks.
  8. Apply Sealants: In some cases, applying a suitable sealant to the joints and connections can help prevent leaks. Follow the manufacturer’s instructions for proper application.
  9. Monitor Leakage: After addressing the issues, monitor the gearbox for any signs of continued leakage. If leakage persists, further investigation may be required.
  10. Regular Maintenance: Implement a regular maintenance schedule that includes checking seals, gaskets, and other potential leakage points. Timely maintenance can prevent future leakage issues.

If you’re unsure about diagnosing or fixing oil leakage in a worm gearbox, consider consulting with a professional or gearbox manufacturer to ensure proper resolution.

worm gearbox

How to Select the Right Worm Gearbox for Your Application

Selecting the right worm gearbox for your application involves careful consideration of various factors:

  • Load Requirements: Determine the torque and load requirements of your application to ensure the selected gearbox can handle the load without compromising performance.
  • Speed Reduction: Calculate the required gear reduction ratio to achieve the desired output speed. Worm gearboxes are known for high reduction ratios.
  • Efficiency: Consider the gearbox’s efficiency, as worm gearboxes typically have lower efficiency due to the sliding action. Evaluate whether the efficiency meets your application’s needs.
  • Space Constraints: Assess the available space for the gearbox. Worm gearboxes have a compact design, making them suitable for applications with limited space.
  • Mounting Options: Determine the mounting orientation and configuration that best suits your application.
  • Operating Environment: Consider factors such as temperature, humidity, and exposure to contaminants. Choose a gearbox with appropriate seals and materials to withstand the environment.
  • Backlash: Evaluate the acceptable level of backlash in your application. Worm gearboxes may exhibit more backlash compared to other gear types.
  • Self-Locking: If self-locking capability is required, confirm that the selected gearbox can prevent reverse motion without the need for external braking mechanisms.
  • Maintenance: Consider the maintenance requirements of the gearbox. Some worm gearboxes require periodic lubrication and maintenance to ensure proper functioning.
  • Cost: Balance the features and performance of the gearbox with the overall cost to ensure it aligns with your budget.

Consult with gearbox manufacturers or experts to get recommendations tailored to your specific application. Testing and simulations can also help validate the suitability of a particular gearbox for your needs.

China wholesaler Xhw87-Pg10-P Valve Operator Worm Gearbox   with Hot selling		China wholesaler Xhw87-Pg10-P Valve Operator Worm Gearbox   with Hot selling
editor by CX 2024-02-24

China OEM Xhw35 Worm Gearbox for Valve gearbox adjustment

Product Description

Model: XHW35 worm gearbox for valve

Application
XHW part turn worm gearboxes are applied to dampers, ball valves, butterfly valves and also other 90° quarter turn valves. XHW part turn worm gear operator has variety models of hand wheel for optional.
 
Operating Environment

XHW part turn worm gearboxes are with good mechanical quality and steady operating performance which apply to deal with variety climate and temperature. We strive to develop RHW part turn worm gear operators to meet higher demands.
Enclosure: IP67
Working Temperature: From -40ºC to 120ºC( -40ºF to 248ºF)
Painting: Silver grey (Customization)

Introduction
XHW series Part-turn Gearboxes use worm and worm wheel revolute pairs, with high performance needle roller bearing assembled on both ends of the worm shaft. It ensures the thrust requirement during rotation. It’s in high mechanical efficiency withstands big torque, small size with compact design, and it’s also easy to operate and has reliable self-locking function.
 
Characters
1.Precision casting ductile iron housing
2.Optional output torque, range up to 32000Nm
3.High efficient needle roller bearing
4.High strength steel input shaft
5.Stroke 0°- 90°( ±5°)
6.Compact structure
7.Grease filled for longer life
8.Adjustable stopper (±5°)
9.Good seal
 
Connect with valve
The flange connecting to valve is according to ENISO5210 or DIN3210(Customization)
 

Main Products
Worm gearbox, bevel gearbox, valve gear box, worm gear operator, worm gear actuator, valve worm gear, valve gear operator, valve gear actuator, valve actuator
Gear Operator, Valve Gearbox, Worm Gearbox, Gearbox, Speed Reducer, Part-turn Worm Gearbox, Worm Gearbox Supplier, High Quality Worm Gearbox, Gearbox manufacturer

(XHW35S)

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Type: Worm and Wormwheel
Protection Level: IP67
Working Temperature: -40 to 120 Degrees Celsius
Applications: Ball Valves, Butterfly Valves, Dampers and etc.
Painting: Silver Grey or Customization
Customization:
Available

|

Customized Request

worm gearbox

What are the Noise Levels Associated with Worm Gearboxes?

The noise levels associated with worm gearboxes can vary depending on several factors, including the design, quality, operating conditions, and maintenance of the gearbox. Here are some key points to consider:

  • Design and Quality: Well-designed and high-quality worm gearboxes tend to produce lower noise levels. Factors such as gear tooth profile, precision manufacturing, and proper alignment can contribute to reduced noise.
  • Gear Engagement: The way the worm and worm wheel engage and mesh with each other can impact noise levels. Proper tooth contact and alignment can help minimize noise during operation.
  • Lubrication: Inadequate or improper lubrication can lead to increased friction and wear, resulting in higher noise levels. Using the recommended lubricant and maintaining proper lubrication levels are important for noise reduction.
  • Operating Conditions: Operating the gearbox within its specified load and speed limits can help prevent excessive noise generation. Overloading or operating at high speeds beyond the gearbox’s capabilities can lead to increased noise.
  • Backlash: Excessive backlash or play between the gear teeth can lead to impact noise as the teeth engage. Proper backlash adjustment can help mitigate this issue.
  • Maintenance: Regular maintenance, including gear inspection, lubrication checks, and addressing any wear or damage, can help keep noise levels in check.

It’s important to note that while worm gearboxes can produce some noise due to the nature of gear meshing, proper design, maintenance, and operation can significantly reduce noise levels. If noise is a concern for your application, consulting with gearbox manufacturers and experts can provide insights into selecting the right gearbox type and implementing measures to minimize noise.

worm gearbox

Energy Efficiency of a Worm Gearbox: What to Expect

The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:

  • Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
  • Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
  • Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
  • Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
  • Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.

When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.

worm gearbox

What is a Worm Gearbox and How Does It Work?

A worm gearbox, also known as a worm gear reducer, is a mechanical device used to transmit rotational motion and torque between non-parallel shafts. It consists of a worm screw and a worm wheel, both of which have helical teeth. The worm screw resembles a threaded cylinder, while the worm wheel is a gear with teeth that mesh with the worm screw.

The working principle of a worm gearbox involves the interaction between the worm screw and the worm wheel. When the worm screw is rotated, its helical teeth engage with the teeth of the worm wheel. As the worm screw rotates, it translates the rotational motion into a perpendicular motion, causing the worm wheel to rotate. This perpendicular motion allows the worm gearbox to achieve a high gear reduction ratio, making it suitable for applications that require significant speed reduction.

One of the key features of a worm gearbox is its ability to provide a high gear reduction ratio in a compact design. However, due to the sliding nature of the meshing teeth, worm gearboxes may exhibit higher friction and lower efficiency compared to other types of gearboxes. Therefore, they are often used in applications where efficiency is not the primary concern but where high torque and speed reduction are essential, such as conveyor systems, elevators, automotive steering systems, and certain industrial machinery.

China OEM Xhw35 Worm Gearbox for Valve   gearbox adjustment	China OEM Xhw35 Worm Gearbox for Valve   gearbox adjustment
editor by CX 2024-01-08

China Hot selling Xhw02L Worm Gearbox for Valve planetary gearbox

Product Description

Model: XHW02L manual operated worm gearbox for valve

Application
XHW part turn worm gearboxes are applied to dampers, ball valves, butterfly valves and also other 90° quarter turn valves. XHW part turn worm gear operator has variety models of hand wheel for optional.
 
Operating Environment

XHW part turn worm gearboxes are with good mechanical quality and steady operating performance which apply to deal with variety climate and temperature. We strive to develop XHW part turn worm gear operators to meet higher demands.
Enclosure: IP67
Working Temperature: From -40ºC to 120ºC( -40ºF to 248ºF)
Painting: Silver grey (Customization)

Introduction
XHW series Part-turn Gearboxes use worm and worm wheel revolute pairs, with high performance needle roller bearing assembled on both ends of the worm shaft. It ensures the thrust requirement during rotation. It’s in high mechanical efficiency withstands big torque, small size with compact design, and it’s also easy to operate and has reliable self-locking function.
 
Characters
1.Precision casting ductile iron housing
2.Optional output torque, range up to 32000Nm
3.High efficient needle roller bearing
4.High strength steel input shaft
5.Stroke 0°- 90°( ±5°)
6.Compact structure
7.Grease filled for longer life
8.Adjustable stopper (±5°)
9.Good seal
 
Connect with valve
The flange connecting to valve is according to ENISO5210 or DIN3210(Customization)
 

Main Products
Worm gearbox, bevel gearbox, valve gear box, worm gear operator, worm gear actuator, valve worm gear, valve gear operator, valve gear actuator, valve actuator
Gear Operator, Valve Gearbox, Worm Gearbox, Gearbox, Speed Reducer, Part-turn Worm Gearbox, Worm Gearbox Supplier, High Quality Worm Gearbox, Gearbox manufacturer

(XHW02L)

 

Application: Industry
Type: Worm and Wormwheel
Painting: Silver Grey or Customization
Manipulate Way: Manual Operation
Material: Cast Iron
Working Temperature: -40 to 120 Degrees Celsius
Customization:
Available

|

Customized Request

worm gearbox

Can a Worm Gearbox be Used for High-Speed Applications?

Worm gearboxes are generally not recommended for high-speed applications due to their inherent design characteristics. Here’s why:

  • Efficiency: Worm gearboxes tend to have lower efficiency compared to other gearbox types, which means they can generate more heat and experience more energy loss at high speeds.
  • Heat Generation: The sliding contact between the worm and worm wheel in a worm gearbox can lead to significant friction and heat generation, especially at high speeds. This heat can cause thermal expansion, affecting the gearbox’s performance and longevity.
  • Wear and Noise: High speeds can exacerbate wear and noise issues in worm gearboxes. Increased friction and wear can lead to faster degradation of components, resulting in reduced lifespan and increased maintenance needs.
  • Backlash: Worm gearboxes may have higher backlash compared to other gearbox types, which can impact precision and accuracy in high-speed applications.

While worm gearboxes are more commonly used in applications requiring high torque and moderate speeds, they may not be the best choice for high-speed scenarios. If high-speed operation is a requirement, other gearbox types such as helical, spur, or planetary gearboxes are often better suited due to their higher efficiency, lower heat generation, and reduced wear at elevated speeds.

worm gearbox

Materials Used for Worm Gears

Worm gears are manufactured using a variety of materials to meet different application requirements. Some commonly used materials for worm gears include:

  • Steel: Steel is a popular choice for worm gears due to its strength, durability, and wear resistance. It can handle heavy loads and is often used in industrial applications.
  • Bronze: Bronze offers good lubricity and is commonly used for the worm gear (worm) component. It provides effective wear resistance and works well in applications where quiet operation is essential.
  • Cast Iron: Cast iron is known for its high strength and durability. It’s often used for worm gears in applications where shock loads or heavy-duty conditions are expected.
  • Aluminum: Aluminum worm gears are lightweight and corrosion-resistant, making them suitable for applications where weight reduction is important.
  • Plastic: Some worm gears are made from plastic materials such as nylon or acetal. These materials are often chosen for their self-lubricating properties and quiet operation.
  • Composite Materials: Composite materials can offer a combination of properties, such as lightweight construction and corrosion resistance. They can be suitable for specific applications.

The choice of material depends on factors such as the application’s load, speed, operating environment, and required performance characteristics. It’s important to consider these factors when selecting the appropriate material for worm gears to ensure optimal performance and longevity.

worm gearbox

What is a Worm Gearbox and How Does It Work?

A worm gearbox, also known as a worm gear reducer, is a mechanical device used to transmit rotational motion and torque between non-parallel shafts. It consists of a worm screw and a worm wheel, both of which have helical teeth. The worm screw resembles a threaded cylinder, while the worm wheel is a gear with teeth that mesh with the worm screw.

The working principle of a worm gearbox involves the interaction between the worm screw and the worm wheel. When the worm screw is rotated, its helical teeth engage with the teeth of the worm wheel. As the worm screw rotates, it translates the rotational motion into a perpendicular motion, causing the worm wheel to rotate. This perpendicular motion allows the worm gearbox to achieve a high gear reduction ratio, making it suitable for applications that require significant speed reduction.

One of the key features of a worm gearbox is its ability to provide a high gear reduction ratio in a compact design. However, due to the sliding nature of the meshing teeth, worm gearboxes may exhibit higher friction and lower efficiency compared to other types of gearboxes. Therefore, they are often used in applications where efficiency is not the primary concern but where high torque and speed reduction are essential, such as conveyor systems, elevators, automotive steering systems, and certain industrial machinery.

China Hot selling Xhw02L Worm Gearbox for Valve   planetary gearbox	China Hot selling Xhw02L Worm Gearbox for Valve   planetary gearbox
editor by CX 2023-10-10

China high quality Xhw90pg10 Worm Gearbox for Valve manufacturer

Product Description

Model: XHW90PG10 worm gearbox with handwheel for valve
Double stage

Application
XHW part turn worm gearboxes are applied to dampers, ball valves, butterfly valves and also other 90° quarter turn valves. XHW part turn worm gear operator has variety models of hand wheel for optional.
 
Operating Environment

XHW part turn worm gearboxes are with good mechanical quality and steady operating performance which apply to deal with variety climate and temperature. We strive to develop XHW part turn worm gear operators to meet higher demands.
Enclosure: IP67
Working Temperature: From -20ºC to 120ºC( -4ºF to 248ºF)
Painting: Silver grey (Customization)

(XHW90-PG10S)

Introduction
XHW series Part-turn Gearboxes use worm and worm wheel revolute pairs, with high performance needle roller bearing assembled on both ends of the worm shaft. It ensures the thrust requirement during rotation. It’s in high mechanical efficiency withstands big torque, small size with compact design, and it’s also easy to operate and has reliable self-locking function.
 
Characters
1.Precision casting ductile iron housing
2.Optional output torque, range up to 32000Nm
3.High efficient needle roller bearing
4.High strength steel input shaft
5.Stroke 0°- 90°( ±5°)
6.Compact structure
7.Grease filled for longer life
8.Adjustable stopper (±5°)
9.Good seal
 
Connect with valve
The flange connecting to valve is according to ENISO5210 or DIN3210(Customization)
 

Main Products
Worm gearbox, bevel gearbox, valve gear box, worm gear operator, worm gear actuator, valve worm gear, valve gear operator, valve gear actuator, valve actuator
Gear Operator, Valve Gearbox, Worm Gearbox, Gearbox, Speed Reducer, Part-turn Worm Gearbox, Worm Gearbox Supplier, High Quality Worm Gearbox, Gearbox manufacturer
 

 

Application: Industry
Type: Worm and Wormwheel
Painting: Silver Grey or Customization
Manipulate Way: Manual Operation
Material: Cast Iron
Working Temperature: -20 to 120 Degrees Celsius
Customization:
Available

|

Customized Request

worm gearbox

Calculating Gear Ratio in a Worm Reducer

The gear ratio in a worm reducer is determined by the number of teeth on the worm wheel (also known as the worm gear) and the number of threads on the worm shaft. The gear ratio formula for a worm reducer is:

Gear Ratio = Number of Teeth on Worm Wheel / Number of Threads on Worm Shaft

For example, if the worm wheel has 60 teeth and the worm shaft has a single thread, the gear ratio would be 60:1.

It’s important to note that worm reducers have an inherent self-locking property due to the angle of the worm threads. As a result, the gear ratio also affects the mechanical advantage and the system’s ability to resist backdriving.

When calculating the gear ratio, ensure that the worm reducer is properly designed and that the gear ratio aligns with the desired mechanical characteristics for your application. Additionally, consider factors such as efficiency, load capacity, and speed limitations when selecting a gear ratio for a worm reducer.

worm gearbox

Worm Gearbox Applications in Robotics and Automation

Worm gearboxes play a crucial role in various robotics and automation applications due to their unique characteristics and benefits. Here are some common applications where worm gearboxes are used:

  • Robotic Arm Movement: Worm gearboxes are employed in robotic arms to provide precise and controlled movement. The self-locking property of worm gearboxes helps maintain the arm’s position without requiring additional brakes.
  • Conveyor Systems: In automated production lines, worm gearboxes are used to drive conveyor belts and move materials or products along assembly lines with accuracy.
  • Precision Positioning: Worm gearboxes are used in precision positioning systems, such as those found in pick-and-place robots and CNC machines. They ensure accurate and repeatable movements.
  • Pan and Tilt Mechanisms: Worm gearboxes are utilized in pan and tilt mechanisms of surveillance cameras, robotic cameras, and sensors. The self-locking feature helps stabilize and maintain the desired angle.
  • Automated Gates and Doors: Worm gearboxes are used in automated gate and door systems to control their opening and closing movements smoothly and safely.
  • Material Handling: Robots in warehouses and distribution centers use worm gearboxes to manipulate and lift objects, enhancing efficiency in material handling.
  • Medical Robotics: Worm gearboxes are employed in medical robots for surgical procedures, diagnostic equipment, and rehabilitation devices, ensuring precise and controlled movements.
  • Industrial Robots: Industrial robots rely on worm gearboxes for various tasks, including welding, painting, assembly, and packaging, where precise movements are essential.
  • Automated Testing Equipment: In testing and inspection applications, worm gearboxes provide the necessary movement and positioning for accurate testing and measurements.
  • Food and Beverage Industry: Worm gearboxes are used in automated food processing and packaging systems, ensuring hygienic and precise movement of products.

Worm gearboxes are preferred in these applications due to their compact size, high torque output, self-locking feature, and ability to provide a right-angle drive. However, selecting the right gearbox requires considering factors such as load, speed, efficiency, and environmental conditions.

worm gearbox

How to Select the Right Worm Gearbox for Your Application

Selecting the right worm gearbox for your application involves careful consideration of various factors:

  • Load Requirements: Determine the torque and load requirements of your application to ensure the selected gearbox can handle the load without compromising performance.
  • Speed Reduction: Calculate the required gear reduction ratio to achieve the desired output speed. Worm gearboxes are known for high reduction ratios.
  • Efficiency: Consider the gearbox’s efficiency, as worm gearboxes typically have lower efficiency due to the sliding action. Evaluate whether the efficiency meets your application’s needs.
  • Space Constraints: Assess the available space for the gearbox. Worm gearboxes have a compact design, making them suitable for applications with limited space.
  • Mounting Options: Determine the mounting orientation and configuration that best suits your application.
  • Operating Environment: Consider factors such as temperature, humidity, and exposure to contaminants. Choose a gearbox with appropriate seals and materials to withstand the environment.
  • Backlash: Evaluate the acceptable level of backlash in your application. Worm gearboxes may exhibit more backlash compared to other gear types.
  • Self-Locking: If self-locking capability is required, confirm that the selected gearbox can prevent reverse motion without the need for external braking mechanisms.
  • Maintenance: Consider the maintenance requirements of the gearbox. Some worm gearboxes require periodic lubrication and maintenance to ensure proper functioning.
  • Cost: Balance the features and performance of the gearbox with the overall cost to ensure it aligns with your budget.

Consult with gearbox manufacturers or experts to get recommendations tailored to your specific application. Testing and simulations can also help validate the suitability of a particular gearbox for your needs.

China high quality Xhw90pg10 Worm Gearbox for Valve   manufacturer China high quality Xhw90pg10 Worm Gearbox for Valve   manufacturer
editor by CX 2023-10-10